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1. INTRODUCTION AND SUMMARY

Multitarget Tracking Studies (MTS) is a research effort which has

the objectives of developing and evaluating a new concept for tracking

multiple targets. The algorithms developed in this program (which will

be referred to as the MTS algorithm or processor) will complement and

enhance currently used tracking techniques. While the main goal of the

program is directed towards multiple targets, MTS is expected to have a

significant impact on the single target case as well.

In this report, we summarize the main theoretical developments and

some preliminary performance evaluation results. This work is part of

the first phase of the MTS research program in which the single target

case was studied. Results so far have been very promising and we expect

to adapt the techniques developed in this initial phase to handling

multiple targets during the second phase of the program.

An important point here is the following. It has not been the

objective of this study to surpass conventional estimation performance

of spectrum and TDOA analyzers. The original emphasis was upon demon-

stration that a framework in which these functions can be carried out

naturally for multiple targets is one in which performance on individual

targets can be maintained. It was sufficient, therefore, to demonstrate

that even for low SNR (-lOdB-0dB) the MTS performance compares with

conventional approaches. These approaches make their processing gains

by integration, a procedure also available to MTS. Because pre-integration

performance of MTS was so encouraging, no further pursuit toward com-

parison was undertaken. However, it turned out that the new approach

to adaptive signal processing implicit in the MTS processing could be

developed to one offering substantial improvement over current techniques.

While our research effort is directed towards the development of

tracking algorithms, the signal modeling approach has a much wider

applicability to the Navy's signal processing problems. In particular,
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the MTS algorithm is directly applicable to a number of adaptive

signal processing problems, including: line enhancement, high resolution

spectral estimation, noise cancelling and channel equalization. Applying

the proposed ARMA modeling techniques to some of these problems has

already resulted in substantial performance improvements. The analysis

of the MTS algorithm as it is used for adaptive signal processing is

summarized in [10].

The MTS concept is based on modeling the observed data as an ARMA

process. The parameters of the model provide a compact representation

of target parameters such as spectrum and TDOA/bearing. These parameters

can, therefore, be used as inputs to a tracking algorithm, a target

classification program, etc. Section 2 of the report describes the MTS

concept and how it fits into an overall system.

A major part of our effort has been directed towards developing and

coding the basic MTS algorithm. This algorithm is a parameter estimation

technique which recursively computes a set of ARMA parameters from the

observed data sequence. This algorithm is now implemented as an inter-

active computer program and it provides a very powerful and flexible signal

processing tool. This program will be the core of our future MTS work.

Section 3 of the report describes the algorithm and its main features.

The main issues addressed so far are TDOA estimation and estimation of

the spectral parameters of the target under different signal-to-noise ratio

conditions. Several synthetic test cases, both narrowband and broadband,

were used to evaluate the performance of the MTS algorithm. Results were

very encouraging.

For high SNR (20dB and above) the algorithm provided excellent results,

and had no problems in converging to the right spectral/TDOA parameters.

In moderate SNR (0-20dB), serious convergence problems were initially

experienced.
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A significant amount of effort was devoted to studying and solving

these problems. Our solution provides an important step in extending the

range of applicability of recursive parameter estimation algorithms to low

SNR situations. A number of publications on this topic are in preparation.

Currently, we are able to get good spectral and TDOA estimates for SNR's in

the 0-20dB range. Our experience with low SNR (-lOdB-OdB) has been that

performance matching or exceeding conventional approaches can be achieved.

No special difficulties were observed at low SNR, but we feel that some

refinements of the algorithm may improve performance even further.

The positive results obtained so far will provide the basis for our

next phase of research, in which the multitarget tracking algorithm will

be developed. Our research will be performed in two steps:

(i) Complete the single target tracking algorithm.

Here, we will concentrate on the issues associated with the operation

of the MTS algorithm at low SNR. We will make the algorithm more robust

by pre-filtering and other methods, test its tracking capability on

synthetic data with time varying parameters and develop performance

bounds to evaluate its performance against suitable standards.

(ii) Development and testing of multitarget algorithms for the

high SNR case.

Here we will develop and evaluate a candidate algorithm for tracking

several targets. The objective will be to demonstrate the capability

of an MTS algorithm to provide consistent tracks for several targets.

In particular, we will investigate the special structural properties

of multi-input multi-output (MIMO) systems of the type used to model the

multitarget tracking problem, and study questions of identifiability

and uniqueness. The extension of the MTS approach to tracking multiple

targets at low SNR will be deferred to a third phase of the project.

3



Several issues need to be investigated in order to achieve such an

extension, including: the convergence of the MIMO RML algorithm,

development of pre-filtering and other mechanisms for improved con-

vergence and analysis of the uniqueness and identifiability issues

under low SNR conditions.

This plan of work is summarized in the following schematic:

SINGLE MULTIPLE
TARGET TARGETS

PHASE I Lii )_PHASE Ii
x

High SNR

(i)

Low SNR X -- - - - - - -- - - - -b X

PHASE II PHASF TI

We believe that the next phase of the MTS project will result in

significant contributions to the areas of multitarget tracking, adaptive

signal processing, multichannel parameter estimation and modeling of

vector time-series.
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2. SYSTEM DESCRIPTION

The MTS algorithm is a coherent, time-domain signal processing tech-

nique for extracting target parameters (spectrum and TDOA/bearing) from

multisensor data. The sensors may be the elements of one or several arrays.

The MTS algorithm may operate directly on wideband sensor data, as depicted

in Figure 1.

A
R
G MTS TARGET
EE PROCESSING PARA E-i t.3
T

SENSORS

Figure 1: The MTS Processor

However, since the computational requirements of the MTS algorithm

increase in proportion to the bandwidth of the input signal (as will be shown

later), it is desirable to reduce the bandwidth of the sensor signals before

handing them to the MTS algorithm. This can be done by a preprocessing step,

in which one or more spectral bands of interest are shifted in frequency to

provide a combined, relatively narrowband signal, as depicted in Figure 2.

SELECTED SPECTRAL BANDS

o / / . FREQUENCY

FREQUENCY

0 B

Figure 2: Bandwidth Selection
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This bandwidth reduction can be implemented in many different ways.

A block diagram of one possible implementation is depicted in Figure 3.

Sample

SENSOR -- LOW PASS '- TO

SENSO I FLTERMTS
Y FPROCESSOR

eJ
2 Trfot

a) A Single Spectral Band (Centered at fo)

BAND PASS
FILTER 1

tSample

e j2Trfl1t  •TO
SENSOR l • - MTS

• PROCESSOR

. BAND PASS

~FILTER k

e 21Tfkt

b) Multiple Spectral Bands

Figure 3. Preprocessing for Bandwidth Reduction

In the rest of this report, we will always assume that this prepro-

cessing step has been performed, and that the MTS processor is handed data

with a bandwidth of B Hz. The data is sampled at the Nyquist rate, thus

AT sampling interval = 1/2B (1)

A typical spectrum of the signal at the input of the MTS algorithm

will contain several spectral lines in a noise background, as depicted in

Figure 4. This spectrum was obtained by performing an N point FFT of

the data where
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Thus, the i-th point on the plot represents a frequency fi, where

f i 2iB (4)
i NT N- _

In this report, we will define the signal-to-noise ratio (SNR) as

the ratio of the total signal energy to the total noise energy in the band-

width B which is provided to the MTS processor. The signal and noise

processes are generated by a synthetic data generator which produces for

each sensor a data sequence yi(t).

yi(t) = si(t) + ni(t) (5)

sit) = signal arriving at sensor i

ni(t) = measurement noise at sensor i (white Gaussian

noise, independent from sensor to sensor).

The total signal and noise energies (Si, N.) are computed by

N

Si = s (t) (6a)

1 N

N, = -- ni(t) (6b)

t-1

and the corresponding signal-to-noise ratio is given by

SNR SI/N (7)
i i

The noise energy is related to its spectral power density by

N=NB (8)
0

where N is noise energy per Hz.
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The M S algorithm is based on the idea of fitting an autoregres-

sive moving-average (ARMA) model to the observed time series (see

Appendix A for a more detailed explanation). The basic model is depicted

in Figure 5. The autoregressive (AR) part of the model provides inforia-

tion about the spectrum of the target, while the moving-average (MA) part

gives the TDOA information. Thus, once an ARMA model has been fit to the

observed data, all the target parameters can be obtained from the ARMA

coefficients (ai,B }. The spectral estimate of the target can be

obtained by an FFT of the impulse response of the AR model portion*.

More precisely, we can FFT the time series x(t)

n
a

x(t) = - ai x(t-i) + u(t) (9)

u(t) = 1 t=0

The normalized estimate of the target power spectrum S (i) isX

given by

2 N
Sx(i) = IXi /(" IXi (10)

where {X i } is the FFT of {x(t)}. The interpretation of the frequency

corresponding to the i-th spectral estimate (Sx (i)) is given by (4).

The TDOA estimates can be obtained by looking at the bi  coeffi-

cients, as depicted in Figure 6. The TDOA corresponding to a difference

of one (in order) is AT, where AT is the sampling rate of tae data at

the input to the MTS algorithm. This is not necessarily the ultimate

resolution of our TDOA estimation, since finer resolution can be achieved

by interpolation. A more detailed discussion of this point can be found

in Appendix B.

*Note that we could also evaluate a z-transform.

9
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U~~t) AR x(t)W.c2 2
u(t) - MODEL 4!-f

y 3

SPECTRAL MODEL PROPAGATION MODEL

ci = Attenuation, Di = Delay

Target: n

x(t) = - a. x(t-i) + u(t) X(z) = A-)U(z)
i=l iAz

Receiver: 1 -lx(t-01) 'ClZ D2

y(t) = c2x(t-D2 ) Y(Z) = c2z X(Z)

L3 x(t-D3)JC
B(z)

The Overall Model:

n m
y(t) = - 2 aiy(t-i) + E Biu(t-i) Y(z) =  U(z)

i=lil

Figure 5. An ARMA Model for the Single Target Case
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2i
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3i

• • I I I I I • i

A Ai D 3-D 2  I

Figure 6. Estimating TDOA-s From the b. Coefficients

A change of AT in the TDOA can be translated into a change of

bearing Ae by (see Figure 7),

A O vAT/Lcos6 - v/2BLcos6 (11)

where

L = distance between the two sensors

9 bearing

v sound velocity.

1-Ai



SENSOR 1

L

SENSOR 2 -&

TDOA = L sine/v

AT = L cosO Ae/v

Figure 7: The Geometry for TDOA Computation

The total angular extent over which the MTS processor can be "steered"

is given by Ae.n% where n = the number of b coefficients, i.e.,

the order of the MA model. This angular extent can, of course, be increased

by removing bulk delays prior to the MTS processor. If necessary, several

MTS processors can be run in parallel, each covering a section of Ae-nb
degrees.

Consider, for example, the following representative case:

L = 1200 meters

v = 1490 m/sec

= 20

B = 10 Hz

then: Ae - 3.550

Ae.nb 710.

The presence of doppler shifts in the received signals will be handled

in the MTS algorithm by computing a different set of {ai}  for each sensor.

In other words, different sensors will observe different (shifted) spectral

lines. This feature of the algorithm has not been tested yet, but more

details can be found in Section 3.
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The estimated target parameters computed by the algorithm will be

used as an input to various post processors which extract operational

parameters such as target location (coordinates), target signature, target

type, etc. An overall block diagram of the processing in an MTS system is

depicted in Figure 8.

F iugnture ForDtioa
a Target CldId i itlu 'l

a ecqulsltiOrl

~~~PREPROCESSING MTS U l'll O

PROCESSING

Selectiol)
Sensors b Ia i~dll

* Tirzut Lord.lzatlon

Post Processing

~Figure 8. Block Diagrram of a Basic MTS System
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3. THE MTS ALGORITHM

The core of the MTS processor is a recursive parameter estimation

algorithm which estimates ARMA coefficients from an observed data sequence.

Algorithms of this type have been developed in the context of adaptive con-

trol [1]. Our application of this class of algorithms to acoustic signal

processing seems to be a pioneering effort which promises to lead to a

whole new class of adaptive signal processing techniques. Some important

modifications are required in transforming this type of algorithm from the

control context to the signal processing context. A significant part of

our research effort was directed to investigation and development of these

modifications. A key development, which is described later in this section,

was the improvement of the convergence properties of the algorithm.

The Basic Algorithm

Several versions of recursive parameter estimation algorithms have

been coded and tested:

(1) Recursive Least Squares (RLS)

(2) Recursive Maximum Likelihood (RMLl)

(3) Modified Recursive Maximum Likelihood (RMLP)

(4) Recursive Maximum Likelihood with Prefiltering (RML2)

Initial experiments indicated that the RML2 algorithm is most suitable

for our application. We will therefore describe here only the RML2 algorithm.

For a more detailed description of all of these algorithms see [2], [3].

The RML2 algorithm estimates the parameters of an ARMA model of the

following type:

n an bn

y(t) - l ai y(t) + E bi u(t-i) + i: ci e(t-i) (12)
i~li-l i=O

where e(t) is an (unobservable) white noise process. The presence of the

PRED.G PAGE BLO(.Dj0T F1l1,0 E
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c coefficients enables us to handle correlated measurement noise and

the case of unknown inputs. It is assumed that c 0=1. Equation (12)

can be written more compactly as

y~) T(t)6 + e(t) (13)

where

T

8T, [al, ... ,I a nb, ... I bn; c1, ... ,I cn

The dimension of e and is

n - n + nb+ n.

Since Eq. (13) is linear in the unknown parameters (the components

of 6), a recursive estimation algorithm is obtained by the following

set of Kalman filter equations:

a(t+l) = e(t) + K(t+1) E(t+l) (14a)

K(t+1) - P(t) 0(t+1)I(A + (t+1)P(t)O(t+l))- P(t+l) (P(t+1) (14b)

P(t+1) - [P(t)t)WP(t+1)T (t+)P(t)/(X" T (t+l)P(t) (t+l))]/X (14c)

-error covariance of the parameters.

t&(t+l) - y(t+l) - 0(t+l) T (t) -prediction error, (14d)

with initial conditions,

P(o) - otl, cv. a scalar parameter

6(o) - 0 or 9 0 a prior estimate.

16



The parameter X represents data windowing, i.e., it is the "forgetting

factor" of the algorithm. Various (time-varying as well as fixed) values

of this parameter have been tried out. To facilitate the convergence of

the algorithm on short data sequences the following was found to give the

best results:

A(t+l) = 0 X(t) + (1-X ) (15)

where A(o), A are specified parameters.
0

Other choices for X are described in [2]. Two additional quantities

which are useful to keep track of the numerical behavior of the algorithm

are:

n
trace {P(t)} = l Pii(t) (16)

i=l1

and

q(t) =--- trace {P(t)} trace {P(t)- '} = (17)
n

= a measure of how close to singular is P(t).

The only difficulty with the algorithm described above is that it

requires knowledge of the unobservable noise sequence e(t) (which is

required for t(t)). Since e(t) is unknown, it needs to be replaced

by some estimate of e(t). Different versions of the Recursive Maximum

Likehihood algorithm are obtained by different choices of the estimate of

e(t). For example:

RMLl

1(t) 7y T(t-1) (18)

17 .. .. . .i I



RML2

T

(t) - y(t) -a~) (t) (19)

In RML2, the unknown e(t) is replaced by a filtered version of the

prediction error e(t). This filtering is crucial to the proper conver-

gence of the algorithm in MTS applications.

The filtering is accomplished by replacing the *(t) vector which

is used in Equations (14c), (14d) by a version of p(t) filtered by l/D(z)

where

D(z) = 1 +dl 1 I + ... + dn z-nd (20)
1 nd

Summary of the Filtering Equations

Let n max na . n cn

Define the n x n matrix D
max max

-d -d ... -d 0 .... 0 0
1d

1 0 0

D= 1 (21)

0 1'' 0

Define the n maxl vectors xi, x2, x3  by the following recursions

x (t+l) _ D(t) 0 (0) 0 (22a)

181



x2 (t+l) Dx2 (t) - , x2 (o) 0 (22b)

"3(t+l) = Dx3 (t) - ] , x3 (o) = 0 (22c)

Let

xl~) be naxI consisting of the first na entries of

x2(t) be %xl consisting of the first nb entries of

x3 (t) be n xl consisting of the first nc entries of x3 (t)

then
¢ T ( t ) - [ x-( t ) . -x ( t ) , - ( t ) ] ( 2 3 )

The significance of this filtering has to do with the convergence

properties of recursive parameter estimation algorithms. Convergence

analysis has shown ([4]-[6]) that without prefiltering, the criterion

for convergence is that

H(z) - 1 1 (24a)C(z) 2

be strictly positive real, i.e.,

Re{H(ejw)} > 0 for all w. (24b)

Unfortunately, as will be discussed later, this condition is not

fulfilled for general MTS signals. Since C(z) is n property of the

signal, and is not under our control, it is not possible to guarantee

19



convergence in this case. With prefiltering, the condition for conver-

gence becomes

H(z) = D(z) _ strictly positive real. (25)
C(z) 2

The choice of the filter D(z) is under our control and, therefore,

there is hope of guaranteeing convergence. A typical choice for D(z)

[3] is

D(z) = C(z) (26)

The reasoning behind this choice is that if C(z) is a good estimate of

C(z), we will get

H(z) = C(z) 1 > 0. (27)
C(z) - 2 2

In our preliminary tests, we discovered that for signals generated

by sine waves in white additive noise, this type of filter was inadequate

and convergence could not be achieved. This problem was the major

stumbling block in our initial research effort and led to a more careful

investigation into the convergence of RML2 for MTS signals. A solution

to the problem has been found and sucessfully tested. The technique we

developed is a significant contribution to the study and application of

recursive parameter estimation. The main ideas of our technique are

described next.

20



Improved Pre-Filtering fo RML2

To understand the difficulties inherent in the pre-filtering problem,

we must first see what the C(z) polynomial means in terms of the target

spectrum A(z), the delay structure B(z) and the signal-to-noise ratio.

The observed signal y(t) is given by

y(t) = B(z) u(t) + v(t) (28)
A(z)

signal measurement
noise

where
-i - a

A(Z) = 1 + az + ... + a Z
n

a

B(z) = b1 z + ... + bnb

2
u(t) ,v(t) = independent white noise processes with 

variance a
2 u

and 2 respectively.

Multiplying through by A(z) we get

A(z)y(t) = B(z)u(t) + A(z)v(t) (29)

Since neither u(t) nor v(t) is directly measureable, there is no way

of distinguishing between them and they can be replaced by a white process

e(t) with variance 02 such that
e

A(Z)y(t) = C(z) e(t), (30)

where

a 2 C(z) C(z - I ) = 02 B(z) B(z -1 ) + 02A(z) A(z-). (31)
e u n

In other words, C(z) e(t) will have the same spectrum as B(z) u(t) +

A(z) v(t). To gain some insight into what C(z) may look like,
-D

we consider two simple examples. Both examples assume B(z) = bDz

i.e., a pure delay propagation model.

I
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(i) SNR=

2
In this case, a n 0 and thereforen

a2C(z) C(z) 2 b2
e~ u D

or

C(z) = aubD/a = constant (32)

(ii) SNR = 0 (or - db)

In this case, the second term on the right-hand side of (11)

dominates, and therefore,

a2 C(z) C(z
I) a2 A(Z) A(z

-)
e n

or

C(z) ; A(z). (33)

In general, as the SNR decreases, the zeroes of C(Z) will move from

the origin, towards the zeroes of A(z), as indicated in Figure 9. The

exact trajectory of this motion can be plotted using classical root locus

techniques [7]. Note that the zeroes of A(z) are shown in Figure 9 to

be on or very close to the unit circle. This is to be expected for narrow-

band line spectra and for pure sine waves.

Several conclusions can be drawn from the discussion above: (i) For

high SNR, no pre-filtering is needed since C(z) = a positive constant;

(ii) For very low SNR C(z) has zeroes near the unit circle which means

that l/C(z) will most likely not be positive real! Thus, pre-filtering

is needed. We many choose either D(z) = C(z) or D(z) -A(z), since

C(z) Z A(z). The choice D(z) - A(z) is usually preferred since the esti-

mates of the AR coefficients {a i  converge much faster thanMA coefficients
c i I(Ci}.

Preliminary tests of the algorithms essentially confirmed these con-

clusigrs. However, serious difficulties were experienced in the case of
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narrowband signals in which case A(z) has zeroes very close to the

unit circle. Filtering by A(z) led the algorithm to diverge even for

reasonably good SNR's. Further investigation indicated at least two

possible causes for this phenomenon:

(i) The filter A(z) is often unstable, i.e., A(z) has poles

outside the unit circle. The reason is that since A(z)

has poles very near to the unit circle, relatively small

estimation errors are sufficient to make A(z) unstable,

and cause the algorithm to "blow up".

(ii) The assumption that C(z) - A(z) and therefore that

(A(z)/C(z) - 1/2) is positive real is only true for very

low SNR's. At moderate SNR's, C(z) may be quite different

from A(z) as (31) and Figure 9 clearly indicate. Thus, it

would be preferable to find a filter D(z) that is closer

to C(z).

A solution which addresses both of these issues is the following:

let

D(z) = A(kz) (34)

where k is some constant smaller than one. The zeroes of A(kz) are

obtained from the zeroes of A(z) by shifting along radial lines, as

indicated in Figure 10. The new filter is implemented by setting

i
^

di = k a (35)

since ^ ^a ^ 2-2 ~ n -n

A(kz)=-I+a kz akz + ... k az a (36)
1 2 na

The modified filter A(kz) is more stable than A(z), since its roots

are further away from the unit circle. Furthermore, by a proper choice of

k, these roots can be brought closer to the roots of C(z), as indicated

by a comparison of Figures 9 and 10.
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The introduction of this modified pre-filter greatly improved

the convergence properties of the algorithms for moderate and low SNR.

Finally we should note that typically the RML2 algorithm is used

with nb a 0 and n - n = twice the number of sine waves expected.a c

Setting n= 0 is necessary, since the inputs u(t) are not observable

by the algorithm. The algorithm is also used in another mode with

n = n c 0 when performing TDOA estimation for pure sine waves ina c

noise, as will be discussed later.

zeroes of A(kz)!A

Figure 10. The Root Locus for A(kz)

i
25



4. PERFORMANCE EVALUATION

The MTS algorithm was coded and tested to evaluate its performance

for different types of signals and different signal-to-noise ratios. The

tests so far have been restricted to a single fixed target. Two aspects

of the algorithm were studied in these tests: estimation of target spec-

trum and TDOA estimation. In this section, we present some preliminary

results which indicate the type of performance achievable by the MTS

algorithm. It should be emphasized, however, that these results are not

conclusive; mote testing would be needed to establish performance bounds.

4.1 Spectral Estimation

The signals used in our spectral estimation experiments were sine

waves in noise, i.e.,

m
y(t) = A. sin(27Tt/N i ) + v(t) (37)i=l 1i

where

A. = amplitude
1

Ni = period
Ii

v(t) - white gaussian noise

The RML2 algorithm was used to identify the {a i } parameters of the

received signal y(t). The final estimates ai of the parameters are

then used to generate a spectral estimate. In our simulation, this was

done by generating the impulse response of the AR model 1/A(z), where-l^ ' _na

A(z) - 1 + a1 z + ... + a z and computing its power spectrum.n
a

come typical results for two test cases are shown in Figures 11-20.

Test Case #1

The signal was a single sine wave with a period N1 - 5.12.

Assuming that the MTS algorithm operates on a 1 Hz bandwidth (B - 1 Hz),
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this corresponds to a frequency of 0.390 Hz. It should be remembered

that this frequency is really a deviation from the nominal frequency

used in the bandwidth selection process depicted in Figures 2 and 3.

Thus, we actually are looking at an expanded picture of the spectrum

in the range of f to f +B Hz.
o 0

The algorithm used was RML2 with na = n c  2, nb 0, X(o)

X 0 = .99. In all cases N=512 data points were used. This corresponds
0

to an integration time of T : 256 sec = 4 minutes (again assuming B-1).

The results are summarized in Table 1 and Figures 11-15. It should

be pointed out that for the low SNR cases (-5 dB, -lOdB) the algorithm

really requires a longer integration time. However, already at N-512

points, or 4 minutes of integration, the true spectrum starts to emerge.

For comparison purposes, we have included in the figures a plot of a con-

ventional FFT, using the same number of data points. Hanning windowing

was used where indicated.

Test Case #2

The signal consisted of two sine waves with periods N1 =5.12, N2=3.00,

which correspond to 0.390 Hz and 0.667 Hz. The same algorithm was used as

in Test Case #1. The results are summarized in Table I and Figures 16-20.
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(Windowed) SNR=2OdB, N=512
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(Windowed) SNR=IOdB, N=512

- 31



0. So. Ie. 15. 20. 250.I i I I
0.0- 0.0

-. 8 -2-0.0

[dB]

-40.0 I -40.0

-60.0 --60.
0. 50. 10. ISO. 200. 250.

Estimated (Windowed)
True (Windowed)

Figure 13A: Estimated vs. True Spectrum -- SNR=OdB
P(o)=l, KA=.9, INIT=Zero

0. 5. 100. 150. 280. 250.
0.- I 0.9

*14

-. 4.0

-60.0 , -60.0
0. 50. 100. 150. 2 00. 250.
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4.2 TDOA Estimation

Several techniques for TDOA estimation based on the MTS algorithm

were implemented and tested. The first and most straightforward approach

consists of estimating the coefficients {b of an MA model relating

the signals yl(t), Y2 (t) at the output of two receivers. Let us assume

that the signals in the two receivers are given by

yl(t) - x(t-D I) + n1 (t) (38a)

Y2 (t) = x(t-D 2) + n2 (t) (38b)

where

x(t) = target signal

DD 2 = propagation delays

nl,n 2 = independent measurement noise processes

This equation can be rewritten as

y2 (t) Y 1 (t-T) + n(t) (39)

where

T D2 - D1 . TDOA

n(t) n2 (t) - n1 (t-T)

Equation (39 ) represents a special case of a moving average model

Y2 (t) b E biyl(t- i) + n(t) (40)
i-I

with bi # 0 except for b = 1. Thus, estimating the model parameters

and looking for the largest {b i} will indicate the value of the TDOA.

These parameters can be also used to estimate noninteger values of the

TDOA by a proper interpolation technique, as discussed in Appendix B.

This interpolation technique was used to provide estimates in two test

cases:
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Case #1

A second order AR model driven by white noise, with a spectrum

given by Figure 21. The algorithm used was RLS with na - n - 0,a c

nB = 7, A(o) - .95, X°  .99. Some typical results are summarized in

Table 2. The true value of the TDOA was T - 3.00.

Case #2

A fourth order AR model driven by white noise with a spectrum

given by Figure 22. The same algorithm was used as in case #1. The

true value of the TDOA was 3.00.

TABLE 2

TDOA Estimation

SFIR (dB) b 1 2 -~-- b 3  ]b 1 h5 b6  b P(0) j(0) f N

.01 0000 000 .000 .on .000 .0o 3.000 10 ZERO 512
F( V

20 -.045 .048 .89 . .037 -.024 - .028 .00 2.985 10 ZERO I 512CASE4l I0 -.158 -.160 .616 .120 -.121 -.074 .041 2.931 10 ZERO 512

0 -.157 .137 .321 .104 -.1b3 -.127 .027 2.844 .1 SPEC 512

-.095 .074 .177 .024 -.096 -.099 .001 2.772 10 SPEC 2068

-10 -.045 .039 .080 -.002 -.045 -.051 -.005 2.705 10 SPEC 12048

.000 .nO0 1.000 .000 .000 .000 .000 3.000 .1 SPEC 512

20 -.189 .283 .535 .234 -.154 -.026 -.007 2.876 .1 SPEC I512

CASE 10 -.232 .277 .379 .170 -.180 -.035 -.022 2.591 1 SPEC 512

0 -.160 .192 .232 .110 -.170 -.166 -.026 2.515 .1 SPEC 512

- 5 -.082 .085 .159 .040 -.089 -.144 -.047 .I715 1 SPEC 2048

-10 -.040 .044 .076 .010 -.038 -.075 -.033 2.673 I SPEC 2048
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Figure 22: Target Spectrum for TDOA Test Case #2
a=-1.506, a2 =2.1654, a 3=- 1.2199, a 4=.6561

42



A somewhat improved version of this approach can be obtained by

using the MTS algorithm in an Adaptive Line Enhancer (ALE) mode of opera-

tion. The algorithm described in Section 3 provides a predicted estimate

of the input signal (see Eq. (14d)),

^ (t~l)T ^

y(t+l) - (t+l) 6(t) (41)

The estimated signal y(t) provides a cleaner, i.e., less noisy version

of the received signal y(t). This is illustrated in Figures 24 and 25

which compare the power spectra of y and y for two test cases. Note

the significant decrease in the noise levels in 24B and 25B.

Thus, the "enhanced" signal y(t) can be used as an input to the

TDOA estimation algorithm, as depicted in Figure 23. Initial results

have indicated some improvement when this method was used, however, more

testing is necessary before final conclusions can be drawn

A second approach to TDOA estimation is based on "whitening" the

sensor signals using the MTS algorithm and then cross-correlating to

obtain the TDOA estimate. The signal whitening is achieved by using the

RML2 and obtaining the residual sequence et corresponding to the input

signal yt (See Figure 26.) Correlating the residuals gives a sharp well-

defined peak which provides a better indication of the TDOA. Some typical

examples are given in Figures 27A, 27B, which compare the correlation func-

tion of the residuals with that of a cleaner version of the data obtained

by using the predicted signals yl,y2. This approach has significant

similarities to the coherence techniques now widely employed for target

detection and localization ( 9].
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Figure 23: An Improved TDOA Estimator,
Using the Estimated Signals
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"Whitening" and Cross Correlation
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A third approach to TDOA estimation is based on the idea that the

residuals zi(t) provide an estimate of the white driving process u(t).

Therefore, it is possible to use the residual :1(t) computed for

sensor #1 together with the received data y2(t) in sensor #2 as the

"known" input and output of an ARMA model, and thus apply the RLS esti-

mation algorithm to find its parameters (see Figure 28).

RML2 1

RLS a. b~

Y2

Figure 28. TDOA Estimation by Estimating The Input
to the Spectral Model

The residual process C1 (t) is in fact a noisy estimate of the

input process u(t). It has two components: one due to the measurement

noise, and the other due to the unpredictable part of tne signal. In

wideband signals, the second component is significant and we may expect

EI(t) to provide a reasonable estimate of u(t). However, in narrow-

band signals, which are highly predictable, the second component is

small and Ejt) is a very noisy estimate. (In fact, for pure sine waves

the second component vanishes!)

These statements are substantiated both by theory and by tests.

We found that for pure sine waves, the residuals eventually converge to

the measurement noise, and no longer contain information about the signal.

For AR processes which are not pure sine waves, the method described

above worked satisfactorily in sufficient high SNR. The more narrowband

the signal, the worse the performance obtained for a given SNR.

The last approach that was considered for TDOA estimation was to perform

multichannel (single input-multiple outputs) parameter estimation using an

extension of the RML2 algorithm. One form of the multichannel algorithm,
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suitable for the no noise case (SNR=-), was implemented and tested success-

fully. As expected, no problems occurred in the no-noise case. The

algorithm requires some modifications before it can be used on noisy data

(see [21).

Computational Requirements

The computational requirements of the MTS algorithm, ;.s any other

algorithm, are difficult to estimate since they depend strongly on a

particular implementation. Furthermore, a major part of the computational

load is due to data handling, 1/0, and the interactive nature of our

current program. However, a useful indicator of the amount of computa-

tion involved is given by counting the number of operations (multiplies

and adds) needed to compute equations (14) and (22), which constitute the

basic RML2 algorithm. An approximate count gives -(4n + 5n 2) multiplies

(where n = the number of estimated parameters) and a comparable number of

adds, per single update. If the algorithm operates on M sensors for N

data points, the total count becomes

No. of operations -'(4n + 5n 2)MN - 2(4n + Sn 2)MBT

Assuming a typical set of parameters:

n =20, M - , B -l10Hz, Tl-1sec.

5
we get 2x10 operations per second. It should be emphasized that this

figure is a very rough estimate. Alternative forms of these algorithms

are currently available which are more efficient (the so-called "fast"

algorithms)-, however, they were not implemented at this stage of the

development.
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5. WORK IN PROGRESS

As mentioned earlier, the results presented in this report are only

preliminary. We are continuing our investigation in two principal

directions:

(i) Algorithm Development/Refinement

The experience gained in testing the MTS algorithm leads

us to believe that the performance achieved so far can be

further improved. Some of the specific issues which are

currently addressed include:

* improved convergence by monitoring the stability of

the filter 6(z), and adjusting the parameter vector

9 so that the roots of C(z) will stay inside the

unit circle. The results of some initial tests are

depicted in Figures 29A-29D. Note the very substan-

tial improvement that was obtained compared to Figures

15A, 19A, 20A, and the fact that Figure 29D corresponds

to SNR =-l5dB!

9 development of algorithms that incorporate structural

constraints of the estimated parameters (e.g., the

fact that the {c .} parameters are related to the {a.

parameters via equation (31)).

(ii) Algorithm Testing and Performance Evaluation

After developing the core MTS program, we are now in a

position to perform a more comprehensive set of tests

to study the performance of our algorithms. Specific

issues which are being investigated include:

*test the tracking capability of the MTS algorithm

on synthetic data with time varying target parameters

(TDOA and spectrum).
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9 Test algorithm performance under a variety of

conditions including multipath, and more realistic

(but still synthetic) data.

In addition to this work which is part of Phase I of the project,

we are also studying some of the problems to be addressed in Phase II,

i.e., the extension to the multiple target case. This extension will

involve fitting a multi-input, multi-output (MIMO) ARMA model to the

observed data, as depicted in Figure 30.

We are currently studying some of the basic problems involved in

estimating the parameters of MIMO systems and evaluating the modification

required to adapt our current MTS algorithm to the multitarget case.

Our approach to the multitarget case will consist of two steps, as

mentioned in the introduction. First, we plan to treat the no-noise case.

Some of the fundamental issues that need to be addressed are:

Develop an algorithm for identifying multi-input multi-

output systems with unknown inputs. Current techniques

are available only for the known input case. Some pre-

liminary work was already performed in the current phase

and we do not anticipate any major difficulties.

" Investigate the special structural properties of the MIMO

case (e.g., going from Left Matrix Fraction Description to

Right Matrix Fraction Description, while preserving the

structure-(see Appendix A, Equation (18)).

" Study questions of identifiability and uniqueness of the

MIMO ARMA model and their relationships to achievable

resolutions (e.g., separation of closely spaced targets)

and to the discrimination capability of the MTS algorithm.
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X y1

Uy
3

SPECTRAL MODEL PROPAGATION MODEL

X(z) = A- I(Z) U(z) A(z) = [1i 0 A 2z)1

X(z), U(z) are Nxl vectors, N = number of targets

y(z) = B(z) X(z) = B(z) A- (Z) U(z)

H(z)

y(z) is an Mxl vector, M = number of sensors

Figure 30: Model for the Multitarget Data
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* Implement and test a candidate algorithm with emphasis on its

tracking ability. The objective will be to demonstrate that

after track initiation, the MTS algorithm can provide consistent

tracks of several targets.

In the second part of our investigation, we will extend the MTS

algorithm to the noisy data case. Some of the basic issues here are:

0 How to do proper prefiltering for the MIMO RML2 algorithm.

* Develop the positive real conditions for convergence of

the MIMO algorithm and find a way of improving its convergence

(as we did in the single target case).

" Implement and test a candidate algorithm. Run a variety of

test cases at different SNR's to study convergence behavior.

* Use the experience gained to develop a final version of the

MTS algorithm and thoroughly test its tracking capability.

This second step will probably be more difficult than the first, and

require more preparation in terms of developing some new theoretical results.

However, our experience from the first phase of the project provided us with

a clear understanding of the difficulties involved and we feel that the

goals of the project can and will be successfully achieved.

The results of the second phase of the MTS project will provide a

significant contribution not only to multitarget tracking but also to

other areas of interest to the Navy such as: adaptive processing of multi-

channel signals (noise canceling, adaptive deconvolution, adaptive line

enhancement, etc.) and the modeling of vector time-series.
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Let

y1.(t) - ic(t) +n1 t

(Bi)

Y2 (t) = x(t+t) + n 2(t)

represent signals received by two different sensors. The noise processes

n 1 (t), n 2(t) are assumed to be white, and independent. The two signals

are related by

Y2 (t) =y 2 (t+T) + n(t) (B2)

where

n(t) n n2(t) - n 1(t+T).

The noise process n(t) has a variance equal to the sum of the variances

of n 1  and n 2. The sampled values of y1,y2,n will be denoted by

yl(kAT), y2 (kAT), n(kAT). Assuming that the sampling interval AT is

adequately small for x(t), we have

Y1(t) E y1 (kAT) sinc(t-kAT) (B3)

where

sinc(t) =sin(iTt/AT)/(lTt/AT). (B4)

Let

T=ZAT+ AT 0 O<6T< AT.

y2 (iAT) = yl(kAT) sinc[(it-k)AT + AT] + nUiAT) (B5)

69



Without loss of generality, we can set AT 1 1, and make a change

of variables i-k - n, which will give

+00

Y2 (i) M bY (i-n) + n(i) (B6)

where

b = sinc(n + 2 + AT) (B7)n

Thus, the time series Y2 (i) is related to yl(i) by a moving average

(MA) filter with coefficients as given by Equation (B7). In practice,

we will consider only a finite number (nb) of terms in the sum (B6).

The coefficients bn can be considered as the samples of a function

b n(

In our experiments, we used a search algorithm to find the value T

which maximizes b(T). Some typical results are summarized in Table 2,

Section 4. A similar approach, which uses a different type of estimation

algorithm, can be found in [8].
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APPENDIX C

Program Description and Capabilities
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The MTS algorithms were implemented on SCI's VAX. The programs are

written in FORTRAN and are fully interactive. Plotting capabilities

include a Tektronix display and character displays. The interactive

program allows easy changes of test cases (target spectra, signal-to-

noise ratio) and algorithm parameters (type of algorithm, model order),

as well as convenient program modification.

The following pages present an example of the program parameters

under our control and some typical plots obtained for a sample test case.
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* : READ PRLSTUKED SCENARIO

____ ~READSEIUP.DAT_~ NU___

jV* JEr4IARG OLU ADEL
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LJN 64 A M t zilAf US H IIM Di'1M TIIM D -ESCRIPICIi-___-

21 TAIKG UpEw 10 2 0) 'rARGE. PAiRAMS
22 Ri -- th 11 d 0RECEIVERW PAA
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VALUE;S frK LARG
CASE.: 3
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